Isi Artikel Utama
Abstrak
Penelitian ini dilakukan pada sebuah perusahaan pembiayaan yang bergerak dalam bidang pembiayaan investasi, modal kerja, dan multiguna, pada sektor pembiayaan konsumen untuk kendaraan bermotor roda empat, roda dua, dan multiguna. Tingginya kredit macet membuat kualitas asset perusahaan menjadi menurun, meskipun kredit skoring telah digunakan sebagai filter pertama untuk melakukan evaluasi calon debitur, akan tetapi ada beberapa hal yang masih saja terlewat. Kredit skoring tidak akan menjadi relevan jika calon debitur memiliki sedikit ataupun tidak memiliki riwayat kredit sama sekali, calon debitur ini biasa ditemui untuk pembiayaan motor atau kendaraan roda 2 (dua). Maka dari itu penelitian ini dilakukan tidak hanya untuk memberikan informasi terkait klasifikasi debitur saja tetapi juga mengurangi presentasi kredit macet terutama di pembiayaan kendaraan roda 2 (dua) dimasa akan datang. Metode klasifikasi yang digunakan adalah Random Forest dengan SMOTE menggunakan 28 parameter yaitu diantaranya Credit scoring, Gaji, Jumlah kredit aktif, umur debitur, Wilayah pengajuan , status Pernikahan, lama bekerja, jenis kelamin, jumlah tanggungan. Data yang digunakan untuk training model pada penelitian ini adalah data yang ada pada sistem sampai dengan tahun 2023, dengan banyaknya data 254.609. Hasil penelitian menunjukan model Random Forest memiliki persentase keakuratan yang 69%. Akan tetapi masih sedikit lebih tinggi dari metode LGBM yaitu 59% dan XGBoosts dimana tingkat akurasi nya mencapai 39%
Kata Kunci
Rincian Artikel

Artikel ini berlisensi Creative Commons Attribution-NoDerivatives 4.0 International License.
References
- Aji, N. A., & Dhini, A. (2019). Credit Scoring Through Data Mining Approach: A Case Study of Mortgage Loan in Indonesia. Proceedings of the 16th International Conference on Service Systems and Service Management (ICSSSM), IEEE, 1-6. https://doi.org/10.1109/ICSSSM.2019.8887731.
- Alvin Ramaquita, A. A. (2020). Model Credit Scoring Berdasarkan Data Demografi dan Jejaring Sosial di Media Sosial(Studi Kasus: Linkedin). Model Credit Scoring Berdasarkan Data Demografi dan Jejaring Sosial di Media Sosial(Studi Kasus: Linkedin).
- Amir, M. F. (2020). Peran dan Fungsi Otoritas Jasa Keuangan (OJK) dalam Sistem Keuangan di Indonesia (Perspektif Hukum Islam). Al-Amwal: Journal of Islamic Economic Law, 5(1), 59–71.
- Anggraeni, R. (2023, 11 13). Bisnis.com. Retrieved from Bisnis.com: https://finansial.bisnis.com/read/20231113/89/1713735/clipan-finance-cfin-targetkan-kredit-macet-di-bawah-2
- Markov, A., Seleznyova, Z., & Lapshin, V. (2022). Credit scoring methods: Latest trends and points to consider. Journal of Finance and Data Science, 8, 180–201. https://doi.org/10.1016/j.jfds.2022.07.002.
- Bennouna, G., & Tkiouat, M. (2019). Scoring in microfinance: Credit risk management tool – Case of Morocco. Procedia Computer Science, 148, 522-531. https://doi.org/10.1016/j.procs.2019.01.041
- Chen, K., Yadav, A., Khan, A., & Zhu, K. (2020). Credit Fraud Detection Based on Hybrid Credit Scoring Model. Procedia Computer Science, 167, 2–8.
- Dawn, I. C., & Ballera, M. A. (2019). Variable Selection for Credit Risk Scoring on Loan Performance Using Regression Analysis. Proceedings of the IEEE 4th International Conference on Computer and Communication Systems (ICCCS), 746–750. https://doi.org/10.1109/CCOMS.2019.8821664.
- Eriana, E. S., & Zein, A. (2016). Model Sistem Penunjang Keputusan untuk Pengelolaan Pembiayaan Nasabah di BPR Sehat Sejahtera Universitas Pamulang. Sainstech: Jurnal Penelitian dan Pengkajian Sains dan Teknologi, 33(2), 38–46.
- Handhika, T. F., Fahrurozi, A., Zen, R. I. M., Lestari, D. P., & Sari, I. (2019). Modified Average of the Base-Level Models in the Hill-Climbing Bagged Ensemble Selection Algorithm for Credit Scoring. Procedia Computer Science, 157, 229-237.
- Haomin dkk. (2020). Zhima Credit Score in Default Prediction for Personal Loans. Advances in Social Science, Education and Humanities Research, volume 264
- Kartika Dewi, H. (2023, 11 22). Kontan.co.id. Retrieved from Kontan.co.id: https://keuangan.kontan.co.id/news/bfi-finance-berupaya-tekan-rasio-npf-di-akhir-2023-ini-strateginya
- Khaoula dkk. (2020). An Ontology-Based Model for Credit Scoring Knowledge in Microfinance: Towards a Better Decision Making. 2020 IEEE 10th International Conference on Intelligent Systems, IS 2020 - Proceedings.
- Mancisidor dkk. (2022). Generating customer’s credit behavior with deep generative models. Generating customer’s credit behavior with deep generative models.
- Martinez dkk. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering.
- Nursyahriana dkk. (2017). Analisis Faktor Penyebab Terjadinya Kredit Macet. Forum Ekonomi.
- Omar Pahlevi dkk. (2023). Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit. Jurnal Infortech.
- Qiancheng Wei dkk. (2021). Transfer Learning Based Credit Scoring. 2021 25th IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD). It can be found in the conference proceedings, pages 1251-1255.
- Rozo, B. J., Crook, J., & Andreeva, G. (2023). The role of web browsing in credit risk prediction. Decision Support Systems, 164, 113879.
- Rufo Dkk. (2021). Diagnosis of diabetes mellitus using gradient boosting machine (Lightgbm). Diagnostics, 1-14.
- Sadatrasoul dkk. (2013). Credit scoring in banks and financial institutions via data mining techniques: A literature review. Journal of AI and Data Mining, 1.
- Suci Perwitasari, A. (2023, 09 12). Kontan.co.id. Retrieved from Kontan.co.id: https://keuangan.kontan.co.id/news/adira-finance-terapkan-sejumlah-langkah-untuk-jaga-npf-tetap-terkendali
- Triscowati dkk. (2021). Penilaian Kredit Pada Data Tak Seimbang Menggunakan Random Forest. Jurnal Riset Komputer (JURIKOM), Volume 10, Issue 1
- Wang, Y., Zhang, Y., Lu, Y., & Yu, X. (2020). A Comparative Assessment of Credit Risk Model Based on Machine Learning: A Case Study of Bank Loan Data. Procedia Computer Science, 174, 141–149.
- Wang, C., & Xiao, Z. (2022). A Deep Learning Approach for Credit Scoring Using Feature Embedded Transformer. Applied Sciences, 12(21), 10995.
- Hindistan, Y. S., Kiyakoglu, B. Y., Rezaeinazhad, A. M., Korkmaz, H. E., & Dag, H. (2019). Alternative Credit Scoring and Classification Employing Machine Learning Techniques on a Big Data Platform. 2019 4th International Conference on Computer Science and Engineering (UBMK), pp. 1-4. DOI: 10.1109/UBMK.2019.8907113.
- Yong, H., & Jie, S. (2020). Research on Credit Risk Evaluation of Commercial Banks Based on Artificial Neural Network Model. Proceedings of the International Conference on Management Science and Engineering, 141-147. DOI: 10.1109/ICMSE.2020.9261523.
- Zailani dkk. (2020). Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit Di Koperasi Mitra Sejahtera. Infotech: Journal of Technology Information.
- Ziemba, P., Radomska-Zalas, A., & Becker, J. (2020). Client Evaluation Decision Models in the Credit Scoring Tasks. Procedia Computer Science, 176, 3301-3309. DOI: 10.1016/j.procs.2020.09.207.
- Ziyue Qiu dkk. (2020). Credit Risk Scoring Analysis Based on Machine Learning Models. Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE). 220-224
References
Aji, N. A., & Dhini, A. (2019). Credit Scoring Through Data Mining Approach: A Case Study of Mortgage Loan in Indonesia. Proceedings of the 16th International Conference on Service Systems and Service Management (ICSSSM), IEEE, 1-6. https://doi.org/10.1109/ICSSSM.2019.8887731.
Alvin Ramaquita, A. A. (2020). Model Credit Scoring Berdasarkan Data Demografi dan Jejaring Sosial di Media Sosial(Studi Kasus: Linkedin). Model Credit Scoring Berdasarkan Data Demografi dan Jejaring Sosial di Media Sosial(Studi Kasus: Linkedin).
Amir, M. F. (2020). Peran dan Fungsi Otoritas Jasa Keuangan (OJK) dalam Sistem Keuangan di Indonesia (Perspektif Hukum Islam). Al-Amwal: Journal of Islamic Economic Law, 5(1), 59–71.
Anggraeni, R. (2023, 11 13). Bisnis.com. Retrieved from Bisnis.com: https://finansial.bisnis.com/read/20231113/89/1713735/clipan-finance-cfin-targetkan-kredit-macet-di-bawah-2
Markov, A., Seleznyova, Z., & Lapshin, V. (2022). Credit scoring methods: Latest trends and points to consider. Journal of Finance and Data Science, 8, 180–201. https://doi.org/10.1016/j.jfds.2022.07.002.
Bennouna, G., & Tkiouat, M. (2019). Scoring in microfinance: Credit risk management tool – Case of Morocco. Procedia Computer Science, 148, 522-531. https://doi.org/10.1016/j.procs.2019.01.041
Chen, K., Yadav, A., Khan, A., & Zhu, K. (2020). Credit Fraud Detection Based on Hybrid Credit Scoring Model. Procedia Computer Science, 167, 2–8.
Dawn, I. C., & Ballera, M. A. (2019). Variable Selection for Credit Risk Scoring on Loan Performance Using Regression Analysis. Proceedings of the IEEE 4th International Conference on Computer and Communication Systems (ICCCS), 746–750. https://doi.org/10.1109/CCOMS.2019.8821664.
Eriana, E. S., & Zein, A. (2016). Model Sistem Penunjang Keputusan untuk Pengelolaan Pembiayaan Nasabah di BPR Sehat Sejahtera Universitas Pamulang. Sainstech: Jurnal Penelitian dan Pengkajian Sains dan Teknologi, 33(2), 38–46.
Handhika, T. F., Fahrurozi, A., Zen, R. I. M., Lestari, D. P., & Sari, I. (2019). Modified Average of the Base-Level Models in the Hill-Climbing Bagged Ensemble Selection Algorithm for Credit Scoring. Procedia Computer Science, 157, 229-237.
Haomin dkk. (2020). Zhima Credit Score in Default Prediction for Personal Loans. Advances in Social Science, Education and Humanities Research, volume 264
Kartika Dewi, H. (2023, 11 22). Kontan.co.id. Retrieved from Kontan.co.id: https://keuangan.kontan.co.id/news/bfi-finance-berupaya-tekan-rasio-npf-di-akhir-2023-ini-strateginya
Khaoula dkk. (2020). An Ontology-Based Model for Credit Scoring Knowledge in Microfinance: Towards a Better Decision Making. 2020 IEEE 10th International Conference on Intelligent Systems, IS 2020 - Proceedings.
Mancisidor dkk. (2022). Generating customer’s credit behavior with deep generative models. Generating customer’s credit behavior with deep generative models.
Martinez dkk. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering.
Nursyahriana dkk. (2017). Analisis Faktor Penyebab Terjadinya Kredit Macet. Forum Ekonomi.
Omar Pahlevi dkk. (2023). Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit. Jurnal Infortech.
Qiancheng Wei dkk. (2021). Transfer Learning Based Credit Scoring. 2021 25th IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD). It can be found in the conference proceedings, pages 1251-1255.
Rozo, B. J., Crook, J., & Andreeva, G. (2023). The role of web browsing in credit risk prediction. Decision Support Systems, 164, 113879.
Rufo Dkk. (2021). Diagnosis of diabetes mellitus using gradient boosting machine (Lightgbm). Diagnostics, 1-14.
Sadatrasoul dkk. (2013). Credit scoring in banks and financial institutions via data mining techniques: A literature review. Journal of AI and Data Mining, 1.
Suci Perwitasari, A. (2023, 09 12). Kontan.co.id. Retrieved from Kontan.co.id: https://keuangan.kontan.co.id/news/adira-finance-terapkan-sejumlah-langkah-untuk-jaga-npf-tetap-terkendali
Triscowati dkk. (2021). Penilaian Kredit Pada Data Tak Seimbang Menggunakan Random Forest. Jurnal Riset Komputer (JURIKOM), Volume 10, Issue 1
Wang, Y., Zhang, Y., Lu, Y., & Yu, X. (2020). A Comparative Assessment of Credit Risk Model Based on Machine Learning: A Case Study of Bank Loan Data. Procedia Computer Science, 174, 141–149.
Wang, C., & Xiao, Z. (2022). A Deep Learning Approach for Credit Scoring Using Feature Embedded Transformer. Applied Sciences, 12(21), 10995.
Hindistan, Y. S., Kiyakoglu, B. Y., Rezaeinazhad, A. M., Korkmaz, H. E., & Dag, H. (2019). Alternative Credit Scoring and Classification Employing Machine Learning Techniques on a Big Data Platform. 2019 4th International Conference on Computer Science and Engineering (UBMK), pp. 1-4. DOI: 10.1109/UBMK.2019.8907113.
Yong, H., & Jie, S. (2020). Research on Credit Risk Evaluation of Commercial Banks Based on Artificial Neural Network Model. Proceedings of the International Conference on Management Science and Engineering, 141-147. DOI: 10.1109/ICMSE.2020.9261523.
Zailani dkk. (2020). Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit Di Koperasi Mitra Sejahtera. Infotech: Journal of Technology Information.
Ziemba, P., Radomska-Zalas, A., & Becker, J. (2020). Client Evaluation Decision Models in the Credit Scoring Tasks. Procedia Computer Science, 176, 3301-3309. DOI: 10.1016/j.procs.2020.09.207.
Ziyue Qiu dkk. (2020). Credit Risk Scoring Analysis Based on Machine Learning Models. Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE). 220-224