Isi Artikel Utama

Abstrak

Diagnosis tumor otak seperti Glioma, Meningioma, dan Pituitary melalui MRI masih menghadapi tantangan seperti ketergantungan pada interpretasi manual, waktu evaluasi yang lama, dan potensi kesalahan manusia. Untuk mengatasi hal tersebut, pendekatan berbasis deep learning menawarkan solusi yang efisien dan akurat. Penelitian ini bertujuan mengembangkan model klasifikasi tumor otak berbasis deep learning menggunakan arsitektur InceptionResNetV2 dengan teknik augmentasi MixUp untuk meningkatkan akurasi dan generalisasi model. Model dilatih pada 7.023 citra MRI (Glioma: 1.621, Meningioma: 1.645, Pituitary: 1.757, No-tumor: 2.000), dengan MixUp sebagai teknik yang terbukti efektif mengurangi overfitting dan menangani ketidakseimbangan data. Model yang diusulkan mencapai akurasi tertinggi sebesar 99,70%, melampaui model lain seperti CNN dengan Image Enhancement (97,84%)


 

Kata Kunci

InceptionResnetV2 Klasifikasi MixUp Pembelajaran Transfer Tumor Otak

Rincian Artikel

Cara Mengutip
[1]
R. Mahendra, E. A. Laksana, dan S. Sukenda, “Pendekatan Transfer Learning dengan InceptionResNetV2 dan Augmentasi MixUp untuk Peningkatan Klasifikasi Tumor Otak”, Jurnal Algoritma, vol. 22, no. 1, hlm. 161–172, Mei 2025.

References

  1. Z. Rasheed et al., “Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques,” Brain Sci., vol. 13, no. 9, p. 1320, Sep. 2023, doi: 10.3390/brainsci13091320.
  2. A. Amarnath, A. Al Bataineh, and J. A. Hansen, “Transfer-Learning Approach for Enhanced Brain Tumor Classification in MRI Imaging,” BioMedInformatics, vol. 4, no. 3, pp. 1745–1756, Jul. 2024, doi: 10.3390/biomedinformatics4030095.
  3. M. A. Purnama Wibowo, Muhammad Bima Al Fayyadl, Yufis Azhar, and Zamah Sari, “Classification of Brain Tumors on MRI Images Using Convolutional Neural Network Model EfficientNet,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 6, no. 4, pp. 538–547, Aug. 2022, doi: 10.29207/resti.v6i4.4119.
  4. M. N. Musa, “MRI-Based Brain Tumor Classification using ResNet-50 and Optimized Softmax Regression,” J. INFOTEL, vol. 16, no. 3, Sep. 2024, doi: 10.20895/infotel.v16i3.1175.
  5. S. F. Rahmawaty, A. Kusumadjati, and M. S. Utama, “Profile of Primary Brain Tumor Patients Who Received Radiotherapy at Hasan Sadikin General Hospital Bandung in 2020-2021,” Indones. J. Cancer, vol. 18, no. 2, pp. 116–123, Jun. 2024, doi: 10.33371/ijoc.v18i2.1006.
  6. A. Amila, E. Sembiring, and S. Meliala, “Self Efficacy dan Kualitas Hidup Pasien Tumor Otak,” Med. Respati J. Ilm. Kesehat., vol. 17, no. 3, p. 151, Aug. 2022, doi: 10.35842/mr.v17i3.727.
  7. A. Eko Minarno, I. Setiyo Kantomo, F. D. Setiawan Sumadi, H. Adi Nugroho, and Z. Ibrahim, “Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine,” JOIV Int. J. Inform. Vis., vol. 6, no. 2, p. 404, Jun. 2022, doi: 10.30630/joiv.6.2.991.
  8. Ameliya Widya Astuti, I Made Lana Prasetya, and Tri Asih Budiarti, “Penatalaksanaan Pemeriksaan Magnetic Resonance Imaging (MRI) Lumbal Dengan Kasus Hernia Nukleus Pulposus,” J. Anestesi, vol. 2, no. 1, pp. 331–342, Nov. 2023, doi: 10.59680/anestesi.v2i1.806.
  9. R. Herzog, D. R. Elgort, A. E. Flanders, and P. J. Moley, “Variability in diagnostic error rates of 10 MRI centers performing lumbar spine MRI examinations on the same patient within a 3-week period,” Spine J., vol. 17, no. 4, pp. 554–561, Apr. 2017, doi: 10.1016/j.spinee.2016.11.009.
  10. F. Masruroh, B. Surarso, and B. Warsito, “Perbandingan Kinerja Inception- Resnetv2, Xception, Inception-v3, dan Resnet50 pada Gambar Bentuk Wajah,” J. Teknol. Inf. Dan Ilmu Komput., vol. 10, no. 1, pp. 11–20, Feb. 2023, doi: 10.25126/jtiik.20231014941.
  11. X. Jin et al., “A Survey on Mixup Augmentations and Beyond,” Sep. 08, 2024, arXiv: arXiv:2409.05202. doi: 10.48550/arXiv.2409.05202.
  12. W. Wang, H. Shomer, Y. Wan, Y. Li, J. Huang, and H. Liu, “A Mix-up Strategy to Enhance Adversarial Training with Imbalanced Data,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham United Kingdom: ACM, Oct. 2023, pp. 2637–2645. doi: 10.1145/3583780.3614762.
  13. “Brain Tumor MRI Dataset.” Accessed: Dec. 19, 2024. [Online]. Available: https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
  14. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” Proc. AAAI Conf. Artif. Intell., vol. 31, no. 1, Feb. 2017, doi: 10.1609/aaai.v31i1.11231.
  15. Rio Subandi, Herman, and Anton Yudhana, “Pre-Processing Pada Klasifikasi Citra Medis Pneumonia,” Decode J. Pendidik. Teknol. Inf., vol. 4, no. 1, pp. 86–93, Nov. 2023, doi: 10.51454/decode.v4i1.198.
  16. G. M. Foody, “Sample size determination for image classification accuracy assessment and comparison,” Int. J. Remote Sens., vol. 30, no. 20, pp. 5273–5291, Sep. 2009, doi: 10.1080/01431160903130937.
  17. S. Thulasidasan, G. Chennupati, J. Bilmes, T. Bhattacharya, and S. Michalak, “On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks,” LA-UR--19-25277, 1525811, Dec. 2019. doi: 10.2172/1525811.
  18. D. Liang, F. Yang, T. Zhang, and P. Yang, “Understanding Mixup Training Methods,” IEEE Access, vol. 6, pp. 58774–58783, 2018, doi: 10.1109/ACCESS.2018.2872698.
  19. X.-F. Xu, L. Zhang, C.-D. Duan, and Y. Lu, “Research on Inception Module Incorporated Siamese Convolutional Neural Networks to Realize Face Recognition,” IEEE Access, vol. 8, pp. 12168–12178, 2020, doi: 10.1109/ACCESS.2019.2963211.
  20. X.-F. Xu, L. Zhang, C.-D. Duan, and Y. Lu, “Research on Inception Module Incorporated Siamese Convolutional Neural Networks to Realize Face Recognition,” IEEE Access, vol. 8, pp. 12168–12178, 2020, doi: 10.1109/ACCESS.2019.2963211.
  21. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.
  22. A. Shazia, T. Z. Xuan, J. H. Chuah, J. Usman, P. Qian, and K. W. Lai, “A comparative study of multiple neural network for detection of COVID-19 on chest X-ray,” EURASIP J. Adv. Signal Process., vol. 2021, no. 1, p. 50, Dec. 2021, doi: 10.1186/s13634-021-00755-1.
  23. S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”.
  24. M Mesran, Sitti Rachmawati Yahya, Fifto Nugroho, and Agus Perdana Windarto, “Investigating the Impact of ReLU and Sigmoid Activation Functions on Animal Classification Using CNN Models,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 8, no. 1, pp. 111–118, Feb. 2024, doi: 10.29207/resti.v8i1.5367.
  25. V. Shatravin, D. Shashev, and S. Shidlovskiy, “Implementation of the SoftMax Activation for Reconfigurable Neural Network Hardware Accelerators,” Appl. Sci., vol. 13, no. 23, p. 12784, Nov. 2023, doi: 10.3390/app132312784.
  26. L. Qian, L. Hu, L. Zhao, T. Wang, and R. Jiang, “Sequence-Dropout Block for Reducing Overfitting Problem in Image Classification,” IEEE Access, vol. 8, pp. 62830–62840, 2020, doi: 10.1109/ACCESS.2020.2983774.