Isi Artikel Utama

Abstrak

Retinopathic Diabetic (RD) merupakan salah satu gangguan retina yang disebabkan oleh tingginya kadar gula dalam darah. Jumlah dokter mata yang tersedia lebih sedikit, dan mengobati pasien RD secara manual merupakan proses yang memakan waktu. Oleh karena itu, diperlukan metode deteksi dini RD secara otomatis menggunakan Deep Learning. Tujuan penelitian ini membangun prototipe deteksi dini RD berbasis web dengan klasifikasi gambar retina mata menggunakan model Deep Learning DenseNet121 dan optimizer Stochastic Gradient Descent (SGD) untuk meningkatkan aksesibilitas dan efisiensi skrining. Metode pengembangan perangkat lunak yang digunakan dalam penelitian ini adalah waterfall yang terdiri dari fase analisis, fase desain, fase implementasi, dan fase pengujian. Untuk memastikan prototipe berjalan sesuai dengan yang direncanakan, dilakukan pengujian black-box pada setiap fiturnya untuk memastikan fungsionalitas sistem sesuai dengan spesifikasi yang telah ditentukan. Penelitian ini menghasilkan prototipe deteksi dini RD yang telah teruji dengan semua kasus uji berjumlah 16 dan memiliki status sesuai. Penelitian selanjutnya dapat dilakukan pengembangan sistem lebih lanjut dengan melibatkan pengguna yang sesungguhnya seperti Dokter Mata dan bisa diterapkan di Rumah Sakit.

Kata Kunci

Prototipe Retinopati Diabetik Sistem Waterfall Web

Rincian Artikel

Cara Mengutip
[1]
D. Muhajir, T. Mustaqim, P. H. Safitri, dan V. R. Oktavia, “Rancang Bangun Prototipe Sistem Deteksi Dini Retinopathic Diabetic Berbasis Website”, Jurnal Algoritma, vol. 22, no. 1, hlm. 234–244, Mei 2025.

References

  1. U. Bhimavarapu and G. Battineni, “Deep Learning for the Detection and Classification of Diabetic Retinopathy with an Improved Activation Function,” Healthcare, vol. 11, no. 1, p. 97, Jan. 2022, doi: 10.3390/HEALTHCARE11010097.
  2. D. E. Similié, J. K. H. Andersen, S. Dinesen, T. R. Savarimuthu, and J. Grauslund, “Grading of diabetic retinopathy using a pre-segmenting deep learning classification model: Validation of an automated algorithm,” Acta Ophthalmol, vol. 103, no. 2, Mar. 2024, doi: 10.1111/AOS.16781,.
  3. S. Shekar, N. Satpute, and A. Gupta, “Review on diabetic retinopathy with deep learning methods.,” J Med Imaging (Bellingham), vol. 8, no. 6, p. 060901, Nov. 2021, doi: 10.1117/1.JMI.8.6.060901,.
  4. P. Anilkumar, “Automated Diabetic Retinopathy Detection Using Convolutional Neural Networks For Feature Extraction And Classification (ADRFEC)”, Accessed: May 05, 2025. [Online]. Available: www.ijfmr.com
  5. N. Jagan Mohan, R. Murugan, and T. Goel, “Deep Learning for Diabetic Retinopathy Detection: Challenges and Opportunities,” Studies in Computational Intelligence, vol. 1039, pp. 213–232, 2022, doi: 10.1007/978-981-19-2416-3_12.
  6. “PNPK 2023 - Tata Laksana Retinopathic Diabetica.” Accessed: May 05, 2025. [Online]. Available: https://kemkes.go.id/id/pnpk-2023---tata-laksana-retinopati-diabetika
  7. “Perdami.” Accessed: May 05, 2025. [Online]. Available: https://perdami.or.id/web/perdami/1
  8. “Jumlah Penduduk Pertengahan Tahun - Tabel Statistik - Badan Pusat Statistik Indonesia.” Accessed: May 05, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTk3NSMy/jumlah-penduduk-pertengahan-tahun--ribu-jiwa-.html
  9. “Krisis Dokter di Indonesia: Upaya Pemerintah dan Tantangan Mendesak - Dinas Kesehatan Provinsi Papua.” Accessed: May 05, 2025. [Online]. Available: https://dinkes.papua.go.id/krisis-dokter-di-indonesia-upaya-pemerintah-dan-tantangan-mendesak/
  10. R. Amalia, A. Bustamam, A. R. Yudantha, and A. A. Victor, “Diabetic retinopathy detection and captioning based on lesion features using deep learning approach,” Commun. Math. Biol. Neurosci., vol. 2021, no. 0, p. Article ID 59, 2021, doi: 10.28919/CMBN/5832.
  11. F. C. Monteiro, “Diabetic Retinopathy Grading using Blended Deep Learning,” Procedia Comput Sci, vol. 219, pp. 1097–1104, Jan. 2023, doi: 10.1016/J.PROCS.2023.01.389.
  12. K. D. K. Wardhani, S. Kasim, A. Erianda, and R. Hassan, “Deep Learning-based Method in Multimodal Data for Diabetic Retinopathy Detection,” Int J Adv Sci Eng Inf Technol, vol. 14, no. 5, pp. 1602–1608, Oct. 2024, doi: 10.18517/IJASEIT.14.5.11677.
  13. R. Al-Ahmadi, H. Al-Ghamdi, and L. Hsairi, “Classification of Diabetic Retinopathy by Deep Learning,” International Journal of Online and Biomedical Engineering (iJOE), vol. 20, no. 01, pp. 74–88, Jan. 2024, doi: 10.3991/IJOE.V20I01.45247.
  14. I. Y. Abushawish, S. Modak, E. Abdel-Raheem, S. A. Mahmoud, and A. Jaafar Hussain, “Deep Learning in Automatic Diabetic Retinopathy Detection and Grading Systems: A Comprehensive Survey and Comparison of Methods,” IEEE Access, vol. 12, pp. 84785–84802, 2024, doi: 10.1109/ACCESS.2024.3415617.
  15. A. Lazakidou, Ed., “Web-Based Applications in Healthcare and Biomedicine,” vol. 7, 2010, doi: 10.1007/978-1-4419-1274-9.
  16. R. Abdul et al., “The Waterfall Model-Software Engineering,” International Journal of Research Publication and Reviews Journal homepage: www.ijrpr.com, vol. 5, 2024, Accessed: May 05, 2025. [Online]. Available: www.ijrpr.com
  17. S. Supriyono, “Software Testing with the approach of Blackbox Testing on the Academic Information System,” IJISTECH (International Journal of Information System and Technology), vol. 3, no. 2, pp. 227–233, May 2020, doi: 10.30645/IJISTECH.V3I2.54.
  18. H. K. Aroral, “Waterfall Process Operations in the Fast-paced World: Project Management Exploratory Analysis,” International Journal of Applied Business and Management Studies, vol. 6, no. 1, p. 2021.
  19. S. Herawati, Y. Dwi, P. Negara, H. F. Febriansyah, and D. A. Fatah, “Application of the Waterfall Method on a Web-Based Job Training Management Information System at Trunojoyo University Madura”, doi: 10.1051/e3sconf/202132804026.
  20. P. M. Jacob and M. Prasanna, “A Comparative analysis on Black box testing strategies,” Proceedings - 2016 International Conference on Information Science, ICIS 2016, pp. 1–6, Feb. 2017, doi: 10.1109/INFOSCI.2016.7845290.
  21. G. Betta, D. Capriglione, A. Pietrosanto, and P. Sommella, “A statistical approach for improving the performance of a testing methodology for measurement software,” IEEE Trans Instrum Meas, vol. 57, no. 6, pp. 1118–1126, Jun. 2008, doi: 10.1109/TIM.2007.915143.
  22. T. Y. Chen and P. L. Poon, “Experience With Teaching Black-Box Testing in a Computer Science/Software Engineering Curriculum,” IEEE Transactions on Education, vol. 47, no. 1, pp. 42–50, Feb. 2004, doi: 10.1109/TE.2003.817617.
  23. M. A. Khan and M. Sadiq, “Analysis of black box software testing techniques: A case study,” Proceedings of the 2011 International Conference and Workshop on the Current Trends in Information Technology, CTIT’11, pp. 1–5, 2011, doi: 10.1109/CTIT.2011.6107931.
  24. A. P. Estrada-Vargas, E. López-Mellado, and J. J. Lesage, “A Black-Box Identification Method for Automated Discrete-Event Systems,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 3, pp. 1321–1336, Jul. 2017, doi: 10.1109/TASE.2015.2445332.
  25. D. Marijan, N. Teslic, M. Temerinac, and V. Pekovic, “On the effectiveness of the system validation based on the black box testing methodology,” 2009 IEEE Circuits and Systems International Conference on Testing and Diagnosis, ICTD’09, 2009, doi: 10.1109/CAS-ICTD.2009.4960847.
  26. H. Wu, “An effective equivalence partitioning method to design the test case of the WEB application,” 2012 International Conference on Systems and Informatics, ICSAI 2012, pp. 2524–2527, 2012, doi: 10.1109/ICSAI.2012.6223567.
  27. S. Waruwu, I. Kadek, and D. Nuryana, “Implementasi Arsitektur Monolitik Pada Rancang Bangun Sistem Informasi,” Journal of Informatics and Computer Science (JINACS), vol. 4, no. 04, pp. 399–404, Jul. 2023, Accessed: May 05, 2025. [Online]. Available: https://ejournal.unesa.ac.id/index.php/jinacs/article/view/53665