EVALUASI KONDISI STRUKTURAL PADA JALAN BERDASARKAN HUBUNGAN ANTARA KETIDAKRATAAN PERMUKAAN JALAN (IRI) DAN INDEKS KONDISI JALAN (RCI)

(Studi Kasus Ruas Jalan Selajambe-Cibogo-Cibeet, Cianjur)

Rangga Mandala Utama¹, Ida Farida²

Jurnal Konstruksi Sekolah Tinggi Teknologi Garut Jl. Mayor Syamsu No. 1 Jayaraga Garut 44151 Indonesia Email: jurnal@sttgarut.ac.id

> ¹ranggamandala99@gmail.com ²idafarida@sttgarut.ac.id

Abstrak - Kerusakan-kerusakan pada perkerasan jalan atau lapisan penutup aspal harus diprioritaskan perbaikannya, karena di daerah dengan curah hujan yang tinggi seperti di Indonesia, perkerasan dapat lebih cepat rusak apabila pekerjaan struktur jalan tidak sesuai dengan ketentuan. Tingkat kerataan jalan (International Roughness Index, IRI) merupakan salah satu faktor/fungsi pelayanan (functional performance) dari suatu perkerasan jalan yang sangat berpengaruh pada kenyamanan pengemudi (riding quality). Kualitas jalan yang ada maupun yang akan dibangun harus sesuai dengan standar dan ketentuan yang berlaku. Syarat utama jalan yang baik adalah kuat, rata, kedap air, tahan lama dan ekonomis sepanjang umur yang direncanakan. Pengukuran tingkat kerataan permukaan jalan belum banyak dilakukan di Indonesia mengingat kendala terbatasnya peralatan sehingga persyaratan kerataan dalam monitoring dan evaluation terhadap konstruksi jalan yang ada tidak dapat dilakukan secara baik menurut standar nasional bidang jalan. Untuk mengetahui tingkat kerataan permukaan jalan dapat dilakukan pengukuran dengan menggunakan berbagai cara/metode yang telah direkomendasikan oleh Bina Marga maupun AASHTO. Salah satu cara pengukuran tingkat kerataan jalan yang direkomendasikan oleh Bina Marga yaitu dengan cara form survei kerusakan jalan sesuai pedoman pelaporan nilai kondisi jalan tahun 2015.Tingkat kerusakan jalan rata-rata Ruas Jalan Selajambe-Cibogo-Cibeet sebesar 5,130 %. Lokasi Km.Bdg. 63+000-64+000 memiliki nilai IRI yang paling tinggi yaitu 12, didominasi oleh kerusakan berupa lubang dangkal sebanyak 8.916,56 m2 yang penanganannya direncanakan dengan tambal sulam dengan hotmix, oleh karena itu pengamat Jalan harus sigap dan rutin melaporkan kerusakan-kerusakan jalan tiap bulannya sehingga kemantapan dan kondisi jalan tetap terjaga dengan baik, guna memperlancar menunjang arus/laju perekonomian. Penanganan yang tepat dan sesuai akan membuat jalan berada pada kondisi yang baik berdasarkan kemantapan jalan yang direncanakan.

Kata Kunci: Tingkat Kerataan Permukaan, International Roughness Index (IRI).

I. PENDAHULUAN

Kerusakan-kerusakan pada perkerasan jalan atau lapisan penutup aspal harus diprioritaskan perbaikannya, karena di daerah dengan curah hujan yang tinggi seperti di Indonesia, perkerasan dapat lebih cepat rusak apabila pekerjaan struktur jalan tidak sesuai dengan ketentuan. Salah satu parameter kinerja perkerasan yang dapat ditentukan dengan cara objektif adalah *International Roughness Index* (IRI), disebut juga dengan ketidakrataan permukaan jalan, sedangkan parameter kinerja perkerasan secara subjektif disebut *Road Condition Index* (RCI) disebut juga dengan indeks kondisi jalan, dapat dikatagorikan kedalam penentuan kinerja fungsional berhubungan dengan

ISSN: 2302-7312 Vol. 14 No. 1 2016

bagaimana jalan tersebut memberikan pelayanan kepada pemakai jalan yaitu berupa kenyamanan mengemudi.

II. TINJAUAN PUSTAKA

2.1 Umum

2.1.1 Pemeliharaan Jalan

Penanganan Pemeliharaan Jalan dilakukan sepanjang tahun secara terus menerus. Pemeliharaan Jalan yang selama ini dilaksanakan dengan cara dikontrakkan masih belum memadai dan belum dapat memenuhi sasaran. Pemeliharaan dengan cara dikontrakkan mengakibatkan keterbatasan dalam melakukan kegiatan operasi di luar kontrak (khususnya pekerjaan yang sifatnya mendadak), pemanfaatan tenaga-tenaga personil Dinas Pekerjaan Umum yang berpengalaman dalam pemanfaatan peralatan yang telah tersedia.

2.1.2 Pemeliharaan Rutin Jalan

Pemeliharaan rutin jalan adalah pemeliharaan yang dilaksanakan sepanjang jalan sepanjang tahun secara kontinu, untuk memastikan jalan berada pada kondisi yang baik serta untuk mempertahankan kondisi jalan yang mantap sesuai dengan tingkat pelayanan dan tingkat pelayanan dan kemampuannya pada saat jalan tersebut selesai dibangun dan dioperasikan sampai dengan tercapainya umur rencana yang telah ditentukan.

2.1.3 Kegiatan Utama Pemeliharaan Rutin Jalan

Kegiatan utama pemeliharaan jalan dibagi dalam beberapa kategori pemeliharaan berdasarkan peran dan fungsi masing-masing bagian dari suatu kontruksi jalan. Bagian-bagian dari kontruksi jalan yang perlu dipelihara antara lain sebagai berikut:

- 1. Struktur Perkerasan Jalan
- 2. Bahu Jalan
- 3. Fasilitas Pejalan Kaki/Trotoar
- 4. Fasilitas Drainase/Saluran Jalan dan gorong-gorong
- 5. Daerah Milik Jalan (Damija)
- 6. Lereng/Talud Jalan
- 7. Struktur Pendukung Jalan

2.2 Perkerasan

Menurut Sukirman, 1992. Tanah saja biasanya tidak cukup menahan deformasi akibat beban roda berulang, untuk itu perlu adanya lapisan tambahan yang terletak antara tanah dan roda atau lapisan paling atas dari beban jalan. Secara umum perkerasan jalan dibagi menjadi 2 jenis yaitu:

- Perkerasan Lentur
- Perkerasan Kaku

2.2.1 Struktur Perkerasan Jalan

Kerusakan Pada struktur perkerasan jalan dapat terjadi dengan kondisi yang berbeda-beda sesuai dengan tingkat kerusakannya; sedang, rusak ringan maupun rusak berat.

2.3 Jenis-Jenis Kerusakan Perkerasan Jalan

Menurut Shahin (1994), jenis dan tingkat kerusakan perkerasan untuk jalan raya ada 19 kerusakan yaitu:

- 1. Lubang /Potholes (L)
- 2. Retak Melintang (RL), Transversal Crack
- 3. Retak Memanjang (RP), Longitudinal Crack
- 4. Retak Tidak Beraturan (RTA), Miscellaneous Crack

- 5. Retak Blok (RB), *Block Crack*
- 6. Retak Buaya (RC), Crocodile Crack
- 7. Amblas (AM), Distortion
- 8. Alur (AL), *Rutting*
- 9. Gelombang (GL), Corrugation
- 10. Geser (GE), Shoving
- 11. Pelepasan Butir (PB), Raveling
- 12. Tambalan (TS dan TL), Patching
- 13. Kerusakan Sambungan Melintang (SL) Pada Perkerasan Kaku
- 14. Bleeding (Kegemukan)
- 15. Kerusakan Tepi (*Edge Cracking*)
- 16. Aus (Wearing)
- 17. Perbaikan Kemiringan Melintang (Crossfall)
- 18. Gerusan (Erosion Guilles)
- 19. Kerusakan Panel Beton

2.4 Tingkat kerusakan (Severrity Level)

Severity Level adalah tingkat kerusakan pada tiap-tiap jenis kerusakan. Tingkat kerusakan yang digunakan adalah low severity level (L), medium severity level (M), dan high severity level (H).

2.5 Penyebab kerusakan Perkerasan Jalan

Pada umumnya kerusakan pada konstruksi perkerasan jalan dapat disebabkan oleh hal-hal sebagai berikut:

- 1) Lalu lintas, yang dapat berupa peningkatan beban dan repetisi beban, makin banyak beban berulang yang terjadi, makin besar tingkat kerusakan jalan,
- 2) Air yang dapat berasal dari air hujan, sistem drainase jalan yang tidak baik, dan naiknya air akibat sifat kapilaritas,
- 3) Material konstruksi perkerasan, dalam hal ini dapat disebabkan oleh sifat material itu sendiri atau oleh sistem pengolahan bahan yang tidak baik,
- 4) Iklim dan cuaca, Indonesia beriklim tropis dimana suhu udara dan curah hujan umumnya tinggi, yang dapat merupakan salah satu penyebab kerusakan jalan,
- 5) Kondisi tanah dasar yang tidak stabil, kemungkinan disebabkan oleh sistim pelaksanaan yang kurang baik, atau dapat juga disebabkan oleh sifat tanah dasarnya yang kurang baik, Proses pemadatan lapisan perkerasan diatas tanah dasar kurang baik yang pada umumnya kerusakan-kerusakan yang timbul itu tidak disebabkan oleh satu faktor saja, tetapi dapat merupakan gabungan dari penyebab yang saling kait mengait, (Sukirman, 1992)

2.6 International Roughness Index

International Roughness Index (IRI) atau ketidakrataan permukaan jalan dikembangkan oleh Bank Dunia pada tahun 1980an. IRI digunakan untuk menggambarkan suatu profil memanjang dari suatu jalan dan digunakan sebagai standar ketidakrataan permukaan jalan.

2.7 Road Condition Indeks

Road Condition Index (RCI), disebut juga Indeks kondisi jalan, merupakan salah satu kinerja fungsional perkerasan yang dikembangkan oleh American Association of State Highway Officials (AASHO) pada tahun 1960an.

Tabel 2.1 Kondisi Permukaan Jalan Secara Visual dan Nilai RCI

RCI	Kondisi Permukaan Jalan secara Visual
8 - 10	Sangat rata dan teratur
7 - 8	Sangat baik, umumnya rata
6 - 7	Baik
5 - 6	Cukup, sedikit sekali atau tidak ada lubang tetapi permukaan jalan tidak rata
4 - 5	Jelek, kadang-kadang ada lubang, permukaan jalan tidak rata
3 - 4	Rusak, bergelombang, banyak lubang
2 - 3	Rusak berat, banyak lubang dan seluruh daerah perkerasan hancur
≤ 2	Tidak dapat dilalui kecuali dengan 4WD Jeep

Sumber: Sukirman (1999)

III. METODOLOGI PENELITIAN

Tata cara survei atau pengukuran kerusakan Perkerasan Jalan disesuaikan dengan jenis kerusakan perkerasan. Ada cara pengukuran berdasarkan jenis kerusakan perkerasan. Persentase kerusakan perkerasan jalan ditentukan dengan:

 $D = \Sigma \text{ wi . di}$

D = Total persentase kerusakan perkerasan per segmen.

Sebagai standar dan juga untuk mempermudah, proses perhitungan persentase kerusakan segmen perkerasan, disajikan dalam beberapa formulir berikut:

- Formulir RS1: Rekapitulasi Survei Kerusakan Jalan Formulir RS1 merupakan rekapitulasi atau penggabungan data hasil survei pengukuran kerusakan jalan yang dicatat pada formulir SR. pada formulir ini juga dilakukan perhitungan kuantitas kerusakan untuk tiap jenis kerusakan per sub segmen.
- Formulir RS2: Rekapitulasi Volume Kerusakan Jalan Per Sub Segmen Formulir ini merupakan rekapitulasi total persentase kerusakan jalan per sub segmen dan perhitungan bobot kerusakan sub segmen tersebut terhadap segmen yang terkait.
- Formulir RS3: Rekapitulasi Kondisi Jalan Per Segmen Formulir RS3 merupakan rekapitulasi nilai kondisi segmen berdasarkan persentase kerusakan segmen yang telah dihitung pada formulir sebelumnya, dan nilai ekivalen RCI serta nilai ekivalen IRI per segmen.
- Formulir RS4: Rekapitulasi Kondisi Jalan Provinsi Formulir RS4 merupakan laporan kondisi jalan yang didapat berdasarkan perhitungan pada formulir-formulir sebelumnya. Formulir RS4 digunakan sebagai lampiran laporan kondisi jalan bulanan BPJ.

IV. HASIL DAN PEMBAHASAN

4.1 Pengumpulan Data

Pengumpulan data dilaksanakan pada Balai Pengelolaan Jalan Wilayah Pelayanan I, Jalan Raya Ciranjang Km.Bdg. 52+000 Cianjur Ruas Jalan Selajambe-Cibeet (28,591 Km).

4.2. Pengumpulan data Geometrik Penampang Jalan

4.2.1. Penampang Melintang Jalan

Data Geometrik penampang jalan Ruas Jalan Selajambe-Cibeet sesuai data dan pengamatan dilapangan sebagai berikut:

- Status Jalan : Jalan Provinsi

- Lokasi : Km.Bdg. 53+090 – Km.Bdg. 81+681

- Panjang Ruas Jalan
- Jumlah Lajur
- Lebar Jalan
- Lebar Bahu Jalan
- Lebar Saluran
: 28,591 Km
: 1 Lajur
: 7,00 m
: 1 - 4 m
: 0,5 - 1 m

4.2.2. Data Kontruksi Perkerasan Jalan

Tabel 4.2. Jumlah Segmentasi Perkerasan Jalan

No	Jenis Perkerasan Jalan	Total (Km)
1	Perkerasan Lentur (Hotmix)	27,291 Km
2	Perkerasan Kaku/Rigid (Beton)	1,3 Km

4.3. Evaluasi Jalan

Tabel 4.3. Fungsi Perkerasan dan Karekteristik Perkerasan Berdasarkan Evaluasi

Jenis Evaluasi	Fungsi Perkerasan	Karakteristik Perkerasan	Indikator dan Indeks
			IRI
	Serviceability	Roughness	PSI
			QI
Evaluasi Fungsional	Safety	Texture	Makrotekstur
		Texture	Mikroteksture
		Skid Resistance	Koefisien skid re- sistance
			IFI
Evaluasi Struktural	Kapasitas Struktural	Sifat Mekanik Perkerasan	Deflections
			Cracking
		Kerusakan Jalan	Surface Defects
			Profile Deformations
Referencing		(Location of Pavement	

System	Characteristic Data)	

4.4 Konsep Tingkat Pelayanan Jalan

Jalan dengan lapis beton aspal yang baru dibuka untuk umum merupakan contoh jalan dengan

- nilai IP = 4,2. IP dinyatakan sebagai fungsi dari IRI dengan rumus :

 Untuk perkerasan jalan beraspal : PSI = 5 0,2937 X + 1,1771 X 1,4045 X 1,5803 X
- Untuk perkerasan jalan dengan beton/semen:

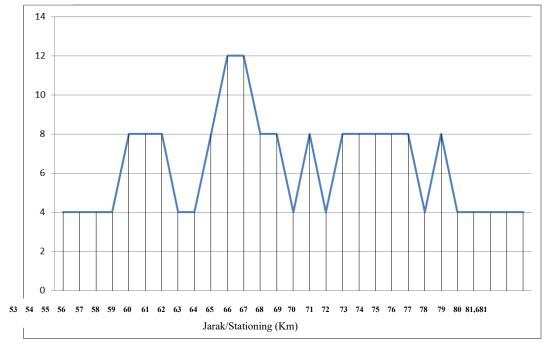
$$PSI = 5 + 0.6046 \text{ X} - 2.2217 \text{ X} - 0.0434 \text{ X}$$

dengan :
$$X = Log(1 + SV) \implies SV = 2,2704 \text{ IRI}^2$$

 $SV = Slope variance (10^6 x population of variance of slopes at 1-ft intervals)$

PSI = *Present Serviceability Index*

IRI = *International Roughness Index*, m/km


Tabel 4.4 Hubungan Fungsi Pelayanan dan Indeks Permukaan (IP)

No	Indeks Perukaan (IP)	Tingkat Pelayanan
1	4 - 5	Sangat Baik
2	3 - 4	Baik
3	2 - 3	Cukup
4	1 - 2	Kurang
5	0 - 1	Sangat Kurang

4.5 Hasil Analisa dan Pembahasan

Setelah dilakukan survei pengukuran kerusakan jalan, maka data-data yang didapat di input kedalam formulir panduan perhitungan dan pelaporan kondisi jalan Dinas Bina Marga Provinsi Jawa Barat, berdasarkan basis data *Interurban Road Management System* (IRMS), yang merupakan suatu sistem pengelolaan jalan nasional dan provinsi yang dikembangkan oleh Departemen Pekerjaan Umum berdasarkan kepada Highway Design and Maintenance Standard. Hasil analisis data kerusakan jalan, maka dihasilkan profil pemukaan seperti disajikan pada Gambar 4.4 Analisis kondisi kinerja pelayanan jalan didasarkan pada nilai parameter IRI (m/km) yang diperoleh.

Pada gambar 4.4 sesuai hasil perhitungan form survey kerusakan jalan, dapat diketahui nilai IRI dari setiap stationingnya, pada STA/Km. 53+090 – 56+000 jalan memiliki nilai IRI 4, STA/Km. 57+000 – 59+000 jalan memiliki nilai IRI 8, STA/Km. 60+000 – 61+000 jalan memiliki nilai IRI 4, STA/Km. 62+000 jalan memiliki nilai IRI 8, STA/Km. 63+000 – 64+000 memiliki nilai IRI 12, STA/Km. 65+000 – 66+000 memiliki nilai IRI 8, STA/Km. 67+000 memiliki nilai IRI 4, STA/Km. 68+000 memiliki nilai IRI 8, STA/Km. 70+000 – 74+000 memiliki nilai IRI 8, STA/Km. 75+000 memiliki nilai IRI 4, STA/Km. 76+000 memiliki nilai IRI 8, STA/Km. 77+000 – 81+681 memiliki nilai IRI 4. Dari data diatas STA/Km yang memiliki nilai IRI paling besar adalah pada STA/Km. 63+000 – 64+000 yaitu 12, Menandakan bahwa jalan tersebut memiliki tingkat kerataan yang tidak rata, karena semakin besar nilai IRI maka tingkat kerataan jalan semakin tidak rata.

Tabel 4.5 Hasil Pengukuran Kerataan Permukaan Perkerasan Rata-rata

No	Nama Jalan	Jenis Perkerasan	Jarak Pengukuran (km)	Persentase Kerusakan (%)	Eq.IRI (m/Km)
1	Selajambe- Cibogo-Cibeet	Perkerasan Lentur dan Perkerasan Kaku	28,591	5,130	4,00

Tabel 4.6 Hasil Estimasi RCI Berdasarkan Nilai Eq. IRI

No	Nama Jalan	Jenis Perkerasan	Eq.IRI (m/Km)	Eq.RCI (m/Km)
1	Selajambe-Cibogo- Cibeet	Perkerasan Lentur dan Perkerasan Kaku	4,00 (Baik/Rata)	6,87 (Baik)

Tabel 4.7. Kategori Fungsi Pelayanan Jalan Berdasarkan Estimasi Nilai PSI

No	Nama Jalan	Jenis Perkerasan	IRI (m/Km)	PSI=IP	Fungsi Pelayanan
1	Selajambe- Cibogo-Cibeet	Perkerasan Lentur dan Perkerasan Kaku	4,00	1,824	Kurang (1-2)

Tabel 4.8 Kategori Kondisi Permukaan Perkerasan Jalan Berdasarkan Estimasi Nilai RCI

No	Nama Jalan	Jenis Perkerasan	IRI (m/Km)	RCI	Kondisi Permukaan
1	Selajambe- Cibogo-Cibeet	Perkerasan Lentur dan Perkerasan Kaku	4,00	6,87	Baik (6-7)

Berdasarkan hasil analisis (Tabel 4.6 Tabel 4.7 dan 4.8) kemudian dibandingkan dengan spesifikasi IRI, IP/PSI, maupun RCI didapatkan bahwa ruas Jalan Selajambe-Cibogo-Cibeet mempunyai nilai IRI = 4,00 m/km, IP/PSI = 1,824 RCI = 6,87; hal ini menunjukkan bahwa ruas jalan itu masih memiliki kondisi permukaan yang rata, karena untuk jalan lama nilai IRI < 6 m/km. Dengan indeks kondisi jalan 6,86 (6-7) maka jalan tersebut memiliki kondisi jalan yang baik, namun fungsi pelayanan kurang baik karena nilai IP/PSI < 2. Pada saat pengukuran dilakukan Jalan Selajambe-Cibogo-Cibeet belum dilakukan *overlay*, kondisi pada saat itu banyak lubang-lubang dan tambalan yang tidak rata

4.5.2 Perkiraan Volume Kerusakan Per Ruas Jalan

Rekapitulasi volume kerusakan ruas jalan Selajambe-Cibogo-Cibeet (28,591) berdasarkan jenisjenis kerusakan jalan, sesuai form survei kerusakan jalan seperti pada table 4.9 berikut ini:

Tabel 4.9 Perkiraan Volume Kerusakan Per Ruas

	Selajambe-Cibogo-Cibeet					
No	Jenis Kerusakan	Intensitas	Satuan			
1	Lubang Dalam (LT)	4.047,22	m2			
2	Lubang Dangkal (LR)	8.916,56	m2			
3	Retak Melintang Rendah (RLR)	127,78	m			
4	Retak Melintang Sedang (RLS)	11,5	m			
5	Retak Melintang Tinggi (RLT)	11,10	m			
6	Retak Memanjang Rendah (RPR)	167,88	m			
7	Retak Memanjang Sedang (RPS)	7,00	m			
8	Retak Tidak Beraturan Rendah (RTAR)	5,00	m			
9	Retak Tidak Beraturan Sedang (RTAS)	171,03	m			
10	Retak Buaya (RC)	80,77	m2			
11	Amblas (AM)	92,77	m2			
12	Alur (AL)	13,21	m2			

13	Gelombang (GL)	115,42	m2
14	Geser (GE)	20,10	m2
15	Pelepasan Butir (PB)	23,11	m2
16	Tambalan Struktural (TS)	18,66	m2
17	Tambalan Laburan (TL)	27,51	m2
18	Retak D (D Cracking)	27	Buah

Tabel 4.10 Perkiraan Volume Kerusakan Per Ruas

	Selajambe-Cibogo-Cibeet					
No	Jenis Kerusakan	Volume	Jenis	Persentase		
			Penanganan	Penanganan		
1	Lubang Dangkal	8.916,56 m2	Hotmix	60 %		
			Coldmix	40 %		
2	Lubang Dalam	4.047,22 m2	Lapis Penetrasi	100%		
			Agregat Base	100%		
3	Retak Buaya	80,77 m2	Lapis Penetrasi	100%		
			Agregat Base	100%		
4	Amblas	92,77 m2	Lapis Penetrasi	100%		
			Agregat Base	100%		
5	Alur	13,21 m2	Hotmix	100%		
6	Gelombang (<i>Corrugation</i>)	115,42 m2	Lapis Penetrasi	100%		
			Agregat Base	100%		
7	Geser	20,01 m2	Lapis Penetrasi	100%		
			Agregat Base	100%		
8	Pelepasan Butir	23,11 m2	Laburan	100%		

Tabel 4.11 Volume Penanganan Kerusakan Jalan Per Ruas

Selajambe-Cibogo-Cibeet					
	Hotmix (m2)	Coldmix (m2)	Lapen (m2)	Laburan (m2)	Agregat Base (m2)
Volume Penanganan	5.363,14	3.566,62	4.356,19	23,11	4.356,19

V. KESIMPULAN

- Tingkat kerusakan jalan rata-rata Ruas Jalan Selajambe-Cibogo-Cibeet 5,130 %
- Jenis kerusakan meliputi: Lubang Dalam (LT), Lubang Dangkal (LR), Retak Melintang Rendah (RLR), Retak Melintang Sedang (RLS), Retak Melintang Tinggi (RLT), Retak Memanjang Rendah (RPR), Retak Memanjang Sedang (RPS), Retak Tidak Beraturan Rendah (RTAR), Retak Tidak Beraturan Sedang (RTAS), Retak Buaya (RC), Amblas (AM), Alur (AL), Gelombang (GL), Geser (GE), Pelepasan Butir (PB), Tambalan Struktural (TS), Tambalan Laburan (TL), Retak (D Cracking).
- Tingkat kerataan permukaan Jalan Selajambe-Cibogo-Cibeet adalah IRI = 4,00 m/km, IP = 1,824 dan RCI = 6,87. Pengukuran dalam keadaan banyak lubang-lubang dan bekas tambalan yang tidak rata.
- Jalan memiliki kondisi permukaan baik IRI < 6, RCI (6-7), namun fungsi pelayanan IP/PSI masih kurang baik karena < 2.

ISSN: 2302-7312 Vol. 14 No. 1 2016

DAFTAR PUSTAKA

- Hunt, P. 2002, Analysis of Roughness Deterioration of Bitumen Sealed Unbound Granular.
- Kementerian Pekerjaan Umum. (2007). Peraturan Menteri Pekerjaan UmumNomor: 15/PRT/M/2007 Tentang Pedoman Survei Kondisi Jalan Tanah dan atau Kerikil dan Kondisi Rinci Jalan Beraspal untuk Jalan Antar Kota. Jakarta: Kementerian Pekerjaan Umum.
- Kementerian Pekerjaan Umum. (2011). *Peraturan Menteri Pekerjaan Umum Nomor: 13 /PRT/M/2011 Tentang Tata Cara Pemeliharaan Dan Penilikan Jalan*. Jakarta: Kementerian Pekerjaan Umum.
- Minnesota DOT. (2011). Pavement Distress Identification Manual. Maplewood, MN: Office of Materials and Road Research Pavement Management Unit.
- NCHRP, 2001, Rehabilitation Strategies for Highway Pavements, TRB-NRC, Washington.
- North Carolina DOT. (2012). *Pavement Condition Survey Manual*. North Carolina Department Of Transportation.
- Paterson, W.D.,1987, *The Highway Design and Maintenance Standard Series Road Deterioration and Maintenance Effects*, A World Bank Publication The John Hopkins University Press Baltimore.
- Pavements for Use in Asset Management Modeling. Master of Engineering Thesis,
- Queensland University of Technology, Brisbane, Australia.
- Sayer, M.W., Gillespie T.D dan Queisoz C.A.V., 1986, The International Road Riding Quality.
- Sukirman, S., 1995, Perkerasan Lentur Jalan Raya, Badan Penerbit Nova, Bandung.
- Sukirman, Silvia., 1999, Perkerasan Lentur Jalan Raya, Nova: Bandung.
- South African National Road Agency Limited. (1998). Visual Assessment Manual For Concrete Pavement. Pretoria: South African National Road Agency Limited.
- Timm, D. H., & McQueen, J. M. (2004). A Study Of Manual VS. Automated Pavement Condition Surveys. Montgomery, AL: Alabama Department of Transportation.
- Willey, C.C., 1935, Principles of Highway Engineering, 2 Ed., McGraw-Hill, New York.