Isi Artikel Utama

Abstrak

Struktur bangunan harus dalam kondisi baik dan memenuhi kriteria kelaikan teknis. Masjid Apung Ziadat-ul-Abror di Pantai Pagatan Kabupaten Tanah Bumbu Kalimantan Selatan yang dinisiasi dan dibangun oleh PT. Borneo Indobara diharapkan akan menjadi daya Tarik bagi wisata religi di Tanah Bumbu. Selain aspek keamanan, aspek kenyamanan bagi pengguna harus menjadi perhatian. Pemeriksaan pemenuhan standar getaran menjadi salah datu bagian yang harus dilakukan untuk menjamin jamaah merasa aman dan nyaman saat beribadah di dalam masjid. Hal tersebut sejalan dengan yang diputuskan dalam Keputusan Menteri Negara Lingkungan Hidup No.49 Tahun 1996 dan yang diatur oleh ISO 2631-2 1989 yang mensyaratkan getaran yang tidak merusak bangunan, mengganggu kenyamanan dan kesehatan manusia. Dari hasil uji getar diketahui bahwa getaran pada kondisi operasional masih dalam batas yang diijinkan dengan frekuensi antara 5,66-15,86 Hz, percepatan getaran puncak 0,36-1,94 %g, kecepatan getaran puncak 0,10-1.99 mm/det dan lendutan dinamik 1,22-67.37 mm.

Kata Kunci

Dynamic Frequency Vibration Speed Deflection Acceleration Dinamik Frekuensi Getaran Kecepatan Lendutan Percepatan

Rincian Artikel

Cara Mengutip
[1]
H. Khoeri, G. Adeputra, dan Z. Sembada, “Pemeriksaan Pemenuhan Standar Getaran untuk Keselamatan dan Kenyamanan Masjid Apung Ziadatul Abror dengan Smartphone”, Jurnal Konstruksi, vol. 22, no. 1, hlm. 90–100, Mei 2024.

References

  1. Badan Standarisasi Nasional, SNI 2847: 2019; Persyaratan Beton Struktural untuk Bangunan Gedung. 2019.
  2. International Organization for Standardization, ISO-2631-2:1989, Evaluation of human exposure to whole-body vibration, Part 2: Continuous and shock-induced vibration in buildings (1 Hz”“80 Hz).
  3. Keputusan Menteri Negara Lingkungan Hidup Indonesia No. 49, Baku Tingkat Getaran, Lampiran I Baku Tingkat Getaran Mekanik Berdasarkan Dampak Kerusakan. Indonesia, 1996.
  4. PT. Hesa Laras Cemerlang, “Detail Engineering Design Masjid Apung Borneo Indobara,” 2017.
  5. S. Ho, A. Mohtadi, K. Daud, U. Leonards, dan T. C. Handy, “Using smartphone accelerometry to assess the relationship between cognitive load and gait dynamics during outdoor walking,” Sci Rep, vol. 9, no. 1, Des 2019, doi: 10.1038/s41598-019-39718-w.
  6. L. Wang, H. He, dan S. Li, “Structural vibration performance test based on smart phone and improved comfort evaluation method,” Measurement, vol. 203, hlm. 111947, Nov 2022, doi: 10.1016/j.measurement.2022.111947.
  7. D. Zhang, J. Tian, dan H. Li, “Design and Validation of Android Smartphone Based Wireless Structural Vibration Monitoring System,” Sensors, vol. 20, no. 17, hlm. 4799, Agu 2020, doi: 10.3390/s20174799.
  8. H. Khoeri, S. W. Alisjahbana, dan P. Nugroho, “Uji Beban Dinamik dan Analisis Modal Operasional Jembatan Baja Komposit Underpass Bekambit,” Dinamika Rekayasa, vol. 20, no. 1, hlm. 65”“75, Jan 2024, doi: 10.20884/1.dinarek.2024.20.1.20.
  9. H. Khoeri dan S. W. Alisjahbana, “Pemeriksaan Getaran Struktur dan Rekomendasi Perkuatan untuk Peningkatan Kapasitas Beban dan Pengurangan Getaran,” Konstruksia, vol. 15, no. 1, hlm. 79, Des 2023, doi: 10.24853/jk.15.1.79-96.
  10. H. Khoeri, S. W. Alisjahbana, J. Widjajakusuma, dan N. Najid, “Estimasi Lendutan Pelat Untuk Menghitung Kapasitas Beban Dengan Akurasi Tinggi Menggunakan Uji Getar,” Konstruksia, vol. 14, no. 2, hlm. 175”“188, Jul 2023, doi: 10.24853/jk.14.2.175-188.
  11. F. Bin Zahid, Z. C. Ong, dan S. Y. Khoo, “A review of operational modal analysis techniques for in-service modal identification,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 8. Springer, 1 Agustus 2020. doi: 10.1007/s40430-020-02470-8.
  12. F. Liu, J. Wang, M. Li, F. Gu, dan A. D. Ball, “Operational Modal Analysis of Y25 Bogie via Stochastic Subspace Identification for the Condition Monitoring of Primary Suspension Systems,” dalam ICDAS: International Conference on Damage Assessment of Structures, M. Abdel Wahab, Ed., Porto, Portugal: Springer, Jul 2020, hlm. 166”“181. doi: 10.1007/978-981-13-8331-1_12.
  13. Y. Xu, J. M. W. Brownjohn, dan D. Hester, “Enhanced sparse component analysis for operational modal identification of real-life bridge structures,” Mech Syst Signal Process, vol. 116, hlm. 585”“605, Feb 2019, doi: 10.1016/j.ymssp.2018.07.026.
  14. A. Ali, T. Sandhu, dan M. Usman, “Ambient Vibration Testing of a Pedestrian Bridge Using Low-Cost Accelerometers for SHM Applications,” Smart Cities, vol. 2, no. 1, hlm. 20”“30, Jan 2019, doi: 10.3390/smartcities2010002.
  15. M. Salehi, S. M. Esfarjani, dan M. Ghorbani, “Modal Parameter Extraction of a Huge Four Stage Centrifugal Compressor Using Operational Modal Analysis Method,” Latin American Journal of Solids and Structures, vol. 15, no. 3, hlm. 1”“11, Mei 2018, doi: 10.1590/1679-78254117.
  16. S. Gres, P. Andersen, C. Hoen, dan L. Damkilde, “Orthogonal Projection-Based Harmonic Signal Removal for Operational Modal Analysis,” 2019, hlm. 9”“21. doi: 10.1007/978-3-319-74476-6_2.
  17. E. Ercan, “Assessing the impact of retrofitting on structural safety in historical buildings via ambient vibration tests,” Constr Build Mater, vol. 164, hlm. 337”“349, Mar 2018, doi: 10.1016/j.conbuildmat.2017.12.154.
  18. C. Dalen dan D. Di Ruscio, “On subspace system identification methods,” Modeling, Identification and Control: A Norwegian Research Bulletin, vol. 43, no. 4, hlm. 119”“130, 2022, doi: 10.4173/mic.2022.4.1.
  19. L. Di Natale, M. Zakwan, B. Svetozarevic, P. Heer, G. F. Trecate, dan C. N. Jones, “Stable Linear Subspace Identification: A Machine Learning Approach,” Nov 2023.