Isi Artikel Utama

Abstrak

Dalam dekade terakhir, terjadi peningkatan tanah longsor dan keruntuhan lereng yang signifikan. Guna menjawab permasalahan tersebut, stabilisasi lereng menggunakan metode geo-struktur menjadi sebuah kebutuhan. Seiring dengan perkembangan metode geo-struktur, metode soil bioengineering menjadi alternatif dalam stabilisasi lereng, baik untuk lereng alami maupun lereng buatan. Soil bioengineering sendiri merupakan metode ramah lingkungan untuk stabilisasi dan perkuatan pada lahan miring (lereng) melalui penanaman vegetasi. Tujuan penelitian ini adalah untuk membandingkan antara metode geo-struktur (menggunakan soil nailing dan perkuatan tiang) dan metode soil bioengineering (menggunakan vetiver grass dan switchgrass) dalam stabilisasi lereng. Analisis stabilitas lereng dilakukan dengan menggunakan metode elemen hingga dan mempertimbangkan nilai faktor keamanan (SF). Jika dibandingkan dengan metode geo-struktur, metode soil bioengineering ternyata mampu menandingi sebagai metode stabilisasi lereng pada tiga kondisi tanah yang berbeda, yaitu kondisi tanpa air, kondisi jenuh, dan kondisi tidak jenuh. Metode soil nailing menghasilkan pengaruh paling besar dalam peningkatan stabilitas lereng (SF = 1.384 – 3.096), sedangkan yang berpengaruh paling kecil adalah metode perkuatan tiang (SF = 1.045 – 2.236). Metode soil bioengineering dengan menggunakan switchgrass (SF = 1.060 – 2.322) dan vetiver grass (SF = 1.090 – 2.449), berada pada tingkat menengah di antara metode soil nailing dan perkuatan tiang. Bisa dikatakan bahwa metode soil bioengineering cukup setara dengan metode perkuatan tiang dalam meningkatkan nilai SF meskipun masih jauh di bawah metode soil nailing. Dengan demikian, metode soil bioengineering terbukti dapat menggantikan metode geo-struktur dalam meningkatkan stabilitas lereng.

Kata Kunci

Metode elemen hingga Perkuatan tiang Soil bioengineering Soil nailing Stabilitas Lereng

Rincian Artikel

Cara Mengutip
[1]
F. Adriati, D. S. Irawan, dan E. J. Mihardja, “Soil Bioengineering: Metode Alternatif Peningkatan Stabilitas Tanah”, Jurnal Konstruksi, vol. 22, no. 2, hlm. 63–75, Nov 2024.

References

  1. K. H. Eab, S. Likitlersuang, and A. Takahashi, “Laboratory and modelling investigation of root-reinforced system for slope stabilisation,” Soils Found., vol. 55, no. 5, pp. 1270-1281, 2015, doi: 10.1016/j.sandf.2015.09.025.
  2. G. Zhang, J. Cao, and L. Wang, “Failure behavior and mechanism of slopes reinforced using soil nail wall under various loading conditions,” Soils Found., vol. 54, no. 6, pp. 1175-1187, 2014, doi: 10.1016/j.sandf.2014.11.011.
  3. G. Zhang and L. Wang, “Simplified evaluation on the stability level of pile-reinforced slopes,” Soils Found., vol. 57, no. 4, pp. 575-586, 2017, doi: 10.1016/j.sandf.2017.03.009.
  4. Y.-C. Tan and C.-M. Chow, “Slope Stabilization Using Soil Nails”¯: Design Assumptions and Construction Realities,” Malaysia-Japan Symp. Geohazards, pp. 2277-2280, 2004, [Online]. Available: http://gnpgeo.com.my/download/publication/2004_11.pdf
  5. C.-C. Fan and J.-H. Luo, “Numerical Study on The Optimum Layout of Soil-Nailed Slopes,” Comput. Geotech., vol. 35, no. 4, pp. 585-599, 2008, doi: 10.1016/j.compgeo.2007.09.002.
  6. V. Rotte, B. Viswanadham, and D. Chourasio, “Influence of Slope Geometry and Nail Parameters on The Stability of Soil-Nailed Slopes,” Int. J. Geotech. Eng., vol. 5, no. 3, pp. 267-261, 2011, doi: 10.3328/IJGE.2011.05.03.267-281.
  7. M. A. El Sawwaf, “Strip Footing Behavior on Pile and Sheet Pile-Stabilized Sand Slope,” J. Geotech. Geoenvironmental Eng., vol. 131, no. 6, 2005, doi: 10.1061/(ASCE)1090-0241(2005)131:6(705).
  8. D. H. Gray and R. . B. Sotir, “Biotechnical Stabilization of Steepened Slopes,” 1995.
  9. A. Yildiz, F. Graf, C. Rickli, and S. M. Springman, “Determination of the shearing behaviour of root-permeated soils with a large-scale direct shear apparatus,” Catena, vol. 166, no. March, pp. 98”“113, 2018, doi: 10.1016/j.catena.2018.03.022.
  10. P. P. Capilleri, E. Motta, and E. Raciti, “Experimental Study on Native Plant Root Tensile Strength for Slope Stabilization,” Procedia Eng., vol. 158, pp. 116-121, 2016, doi: 10.1016/j.proeng.2016.08.415.
  11. G. E. Blight, “The Vadose Zone Soil-Water Balance and Transpiration Rates of Vegetation,” Geotechnique, vol. 53, pp. 55-64, 2003, doi: 10.1680/geot.2003.53.1.55.
  12. S. M. Springman, P. Teysseire, and C. Jommi, “Instabilities on Moraine Slopes Induced by Loss of Suction: A Case History,” Geotechnique, vol. 53, pp. 3-10, 2003, doi: 10.1680/geot.2003.53.1.3.
  13. F. Graf and M. Frei, “Soil Aggregate Stability Related to Soil Density, Root Length, and Mycorrhiza Using Site-Specific Alnus incana and Melanogaster variegatus s.l.,” Ecol. Eng., vol. 57, pp. 314-323, 2014, doi: 10.1016/j.ecoleng.2013.04.037.
  14. K. W. Loades, A. G. Bengough, M. F. Bransby, and P. D. Hallet, “Planting Density Influence on Fibrous Root Reinforcement of Soils,” Ecol. Eng., vol. 36, pp. 276-284, 2010, doi: 10.1016/j.ecoleng.2009.02.005.
  15. J. J. Ni, A. K. Leung, C. W. W. Ng, and W. Shao, “Modelling hydro-mechanical reinforcements of plants to slope stability,” Comput. Geotech., vol. 95, pp. 99-109, 2018, doi: 10.1016/j.compgeo.2017.09.001.
  16. D. H. Gray and D. Barker, “Root-Soil Mechanics and Interactions. Riparian Veg.Fluv.,” Geomorphol, pp. 113-123, 2004, doi: 10.1029/008WSA09.
  17. V. Operstein and S. Frydman, “The Influence of Vegetation on Soil Strength,” in Proc. Inst. Civ. Eng. - Gr. Improv., 2000, pp. 81-89. doi: 10.1680/grim.2000.4.2.81.
  18. F. H. Ali and N. Osman, “Shear strength of a soil containing vegetation roots,” Soils Found., vol. 48, no. 4, pp. 587-596, 2008, doi: 10.3208/sandf.48.587.
  19. S. B. Mickovski, “Mechanical Reinforcement of Soil by Willow Roots: Impacts of Root Properties and Root Failure Mechanism,” Soil Sci. Soc. Am. J., vol. 37, no. 4, pp. 1276-1285, 2009, doi: 10.2136/sssaj2008.0172.
  20. E. Comino, P. Marengo, and V. Rolli, “Root Reinforcement Effect of Different Grass Species: A Comparison between Experimental and Models Results,” Soil Tillage Res., vol. 110, no. 1, pp. 60-68, 2010, doi: 10.1016/j.still.2010.06.006.
  21. S. B. Mickovski and L. P. H. van Beek, “Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate,” Plant Soil, vol. 324, no. 1, pp. 43-56, 2009, doi: 10.1007/s11104-009-0130-y.
  22. J. C. Greenfield, “Vegetative vs. Mechanical Soil Conservation System as They Affect Moisture Conservation adn Sustained Production,” in Proceeding of The First International Conference on Vetiver, 1996, pp. 1-7.
  23. A. Noor, J. Vahlevi, and Fathurrozi, “Stabilisasi Lereng Untuk Pengendalian Erosi Dengan Soil Bioengineeringmenggunakan Akar Rumput Vetiver,” J. POROS Tek., vol. 3, no. 2, pp. 69-74, 2011, [Online]. Available: https://ejurnal.poliban.ac.id/index.php/porosteknik/article/view/44
  24. R. N. Brown and B. Maynard, “Evaluation of Native Grasses for Highway Slope Stabilization and Salt Tolerance,” 2010.
  25. F. Y. Nugraha and I. N. Hamdhan, “Analisis Stabilitas Lereng Menggunakan Perkuatan Tanaman Switchgrass,” J. Online Inst. Teknol. Nas., vol. 2, no. 2, pp. 71-82, 2016.
  26. D. Cazzuffi and E. Crippa, “Contribution of Vegetation to Slope Stability: an Overview of Experimental Studies Carried Out on Different Types of Plants,” Eros. Soils Scour Found., pp. 1-12, 2005, doi: 10.1061/40781(160)9.
  27. A. J., “Vetiver untuk Pengendalian Erosi dan Stabilitas Lereng,” Jakarta, 2009.
  28. N. K. Kokutse, A. G. T. Temgoua, and Z. Kavazovic, “Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects,” Ecol. Eng., vol. 86, no. November 2004, pp. 146-153, 2016, doi: 10.1016/j.ecoleng.2015.11.005.