Isi Artikel Utama

Abstrak

Korosi merupakan tantangan signifikan bagi daya tahan material, yang seringkali menyebabkan kerugian ekonomi yang besar. Penelitian ini memanfaatkan teknik Machine Learning (ML) untuk memprediksi efektivitas senyawa obat sebagai inhibitor korosi. Kami menggunakan lima algoritma ML yang menonjol: Regresi Linear, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest, dan XGBoost. Model-model ini dilatih dan dievaluasi menggunakan dataset yang terdiri dari 14 fitur molekuler dengan efisiensi inhibisi korosi (IE%) sebagai variabel target. Hasil pelatihan model awal mengidentifikasi Random Forest dan XGBoost sebagai yang berkinerja terbaik berdasarkan metrik seperti Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), dan R-squared (R²). Penyetelan hiperparameter lebih lanjut menggunakan GridSearchCV menunjukkan bahwa XGBoost, setelah penyetelan, secara signifikan mengungguli model lainnya, mencapai kesalahan terendah dan nilai R² tertinggi, menunjukkan akurasi prediktif yang superior untuk aplikasi ini. Temuan ini menegaskan potensi ML, khususnya XGBoost, dalam meningkatkan pemodelan prediktif inhibitor korosi, sehingga memberikan wawasan berharga bagi bidang ilmu korosi.

Kata Kunci

Machine Learning Inhibitor Korosi Senyawa Obat Model Prediksi Hyperparameter Tuning

Rincian Artikel

Biografi Penulis

Muhamad Akrom, Universitas Dian Nuswantoro

Research Center for Materials Informatics

Cara Mengutip
[1]
M. R. Rosyid, L. Mawaddah, dan M. Akrom, “Investigasi Model Machine Learning Regresi Pada Senyawa Obat Sebagai Inhibitor Korosi”, Jurnal Algoritma, vol. 21, no. 1, hlm. 332–342, Jul 2024.

References

  1. C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” International Journal of Molecular Sciences, 2022, doi: 10.3390/ijms23095086.
  2. M. Akrom et al., “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract,” Applied Surface Science, 2023, doi: 10.1016/j.apsusc.2022.156319.
  3. M. Akrom, “Investigation Of Natural Extracts As Green Corrosion Inhibitors In Steel Using Density Functional Theory,” Jurnal Teori dan Aplikasi Fisika, 2022, doi: 10.23960/jtaf.v10i1.2927.
  4. M. Tampubolon, R. G. Gultom, L. Siagian, P. Lumbangaol, and C. Manurung, “Laju Korosi Pada Baja Karbon Sedang Akibat Proses Pencelupan Pada Larutan Asam Sulfat (H2SO4) dan Asam Klorida (HCl) dengan Waktu Bervariasi,” Sprocket Journal Of Mechanical Engineering, 2020, doi: 10.36655/sproket.v2i1.294.
  5. M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds,” Materials Today Communications, 2023, doi: 10.1016/j.mtcomm.2023.106402.
  6. M. Akrom, “Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor,” Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 2022, doi: 10.30738/st.vol8.no1.a11775.
  7. E. Bowman et al., “International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE International. Available at: http://impact.nace.org/documents/Nace-International-Report.pdf,” 2016.
  8. M. Akrom et al., “Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi,” JoMMiT : Jurnal Multi Media dan IT, 2023, doi: 10.46961/jommit.v7i1.721.
  9. M. Akrom, S. Rustad, and H. K. Dipojono, “A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors,” Physica Scripta, 2024, doi: 10.1088/1402-4896/ad28a9.
  10. Q. Wang et al., “Application of Biomass Corrosion Inhibitors in Metal Corrosion Control: A Review,” Molecules. 2023. doi: 10.3390/molecules28062832.
  11. M. Akrom, S. Rustad, and H. K. Dipojono, “SMILES-based machine learning enables the prediction of corrosion inhibition capacity,” MRS Communications, Apr. 2024, doi: 10.1557/s43579-024-00551-6.
  12. M. Akrom, “Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor,” Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, vol. 8, no. 1, pp. 42–48, Feb. 2022, doi: 10.30738/st.vol8.no1.a11775.
  13. N. Vaszilcsin, V. Ordodi, and A. Borza, “Corrosion inhibitors from expired drugs,” International Journal of Pharmaceutics, 2012, doi: 10.1016/j.ijpharm.2012.04.015.
  14. A. Agrawal and A. Choudhary, “Deep materials informatics: Applications of deep learning in materials science,” MRS Communications. 2019. doi: 10.1557/mrc.2019.73.
  15. M. Akrom, S. Rustad, and H. K. Dipojono, “A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors,” Physica Scripta, vol. 99, no. 3, p. 036006, Mar. 2024, doi: 10.1088/1402-4896/ad28a9.
  16. A. H. Alamri and N. Alhazmi, “Development of data driven machine learning models for the prediction and design of pyrimidine corrosion inhibitors,” Journal of Saudi Chemical Society, vol. 26, no. 6, p. 101536, Nov. 2022, doi: 10.1016/j.jscs.2022.101536.
  17. M. Liu and W. Li, “Prediction and analysis of corrosion rate of 3C steel using interpretable machine learning methods,” Materials Today Communications, vol. 35, p. 106408, Jun. 2023, doi: 10.1016/j.mtcomm.2023.106408.
  18. I. B. Obot and S. A. Umoren, “Experimental, DFT and QSAR models for the discovery of new pyrazines corrosion inhibitors for steel in oilfield acidizing environment,” International Journal of Electrochemical Science, vol. 15, no. 9, pp. 9066–9080, Sep. 2020, doi: 10.20964/2020.09.72.
  19. A. H. Radhi, “HOMO-LUMO Energies and Geometrical Structures Effecton Corrosion Inhibition for Organic Compounds Predict by DFT and PM3 Methods,” NeuroQuantology, vol. 18, no. 1, pp. 37–45, Jan. 2020, doi: 10.14704/nq.2020.18.1.NQ20105.
  20. X. Chen, Y. Chen, J. Cui, Y. Li, Y. Liang, and G. Cao, “Molecular dynamics simulation and DFT calculation of ‘green’ scale and corrosion inhibitor,” Computational Materials Science, vol. 188, p. 110229, Feb. 2021, doi: 10.1016/j.commatsci.2020.110229.
  21. S. Hadisaputra, A. D. Irham, A. A. Purwoko, E. Junaidi, and A. Hakim, “Development of QSPR models for furan derivatives as corrosion inhibitors for mild steel,” International Journal of Electrochemical Science, vol. 18, no. 8, p. 100207, Aug. 2023, doi: 10.1016/j.ijoes.2023.100207.
  22. R. L. Camacho-Mendoza, L. Feria, L. Á. Zárate-Hernández, J. G. Alvarado-Rodríguez, and J. Cruz-Borbolla, “New QSPR model for prediction of corrosion inhibition using conceptual density functional theory,” Journal of Molecular Modeling, vol. 28, no. 8, p. 238, Aug. 2022, doi: 10.1007/s00894-022-05240-6.
  23. I. B. Obot and N. O. Obi-Egbedi, “Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors,” Corrosion Science, vol. 52, no. 2, pp. 657–660, Feb. 2010, doi: 10.1016/j.corsci.2009.10.017.
  24. D. Singh and B. Singh, “Investigating the impact of data normalization on classification performance,” Applied Soft Computing, vol. 97, p. 105524, Dec. 2020, doi: 10.1016/j.asoc.2019.105524.
  25. M. Aghaaminiha et al., “Machine learning modeling of time-dependent corrosion rates of carbon steel in presence of corrosion inhibitors,” Corrosion Science, vol. 193, p. 109904, Dec. 2021, doi: 10.1016/j.corsci.2021.109904.
  26. E. Jumin et al., “Machine learning versus linear regression modelling approach for accurate ozone concentrations prediction,” Engineering Applications of Computational Fluid Mechanics, vol. 14, no. 1, pp. 713–725, Jan. 2020, doi: 10.1080/19942060.2020.1758792.
  27. F. G. Altin, İ. Budak, and F. Özcan, “Predicting the amount of medical waste using kernel-based SVM and deep learning methods for a private hospital in Turkey,” Sustainable Chemistry and Pharmacy, vol. 33, p. 101060, Jun. 2023, doi: 10.1016/j.scp.2023.101060.
  28. A. Huang, R. Xu, Y. Chen, and M. Guo, “Research on multi-label user classification of social media based on ML-KNN algorithm,” Technological Forecasting and Social Change, vol. 188, p. 122271, Mar. 2023, doi: 10.1016/j.techfore.2022.122271.
  29. S. Ben Jabeur, S. Mefteh-Wali, and J.-L. Viviani, “Forecasting gold price with the XGBoost algorithm and SHAP interaction values,” Annals of Operations Research, vol. 334, no. 1–3, pp. 679–699, Mar. 2024, doi: 10.1007/s10479-021-04187-w.
  30. C. G. Siji George and B. Sumathi, “Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction,” International Journal of Advanced Computer Science and Applications, 2020, doi: 10.14569/IJACSA.2020.0110920.
  31. D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Computer Science, vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.